Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons.
نویسندگان
چکیده
High-frequency stimulation of pyramidal cell inputs to developing (P9-12) hippocampal stratum radiatum interneurons expressing GluR2-lacking, Ca(2+)-permeable AMPA receptors produces long-term depression of synaptic transmission, if N-methyl-d-aspartate (NMDA) receptors are blocked. Here we show that these same synapses display a remarkably versatile signal integration if postsynaptic NMDA receptors are activated. At synapses expressing GluR2-deficient AMPA receptors, tetanic stimulation that activates NMDA receptors triggered long-term potentiation or depression (LTP or LTD) depending on membrane potential. LTP was elicited at most synapses when the interneuron was held at -30 mV during the stimulus train but was typically prevented by postsynaptic hyperpolarization to -70 mV, by strong depolarization to 0 mV, by d-2-amino-5-phosphonovaleric acid, or by postsynaptic injection of the Ca2+ chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid. At synapses with predominantly GluR2-containing AMPA receptors, repetitive stimulation did not change synaptic strength regardless of whether NMDA receptors were activated. The interactions among GluR2 expression, NMDA receptor expression, and membrane potential thus confer on hippocampal interneurons a distinctive means for differential decoding of high-frequency inputs, resulting in enhanced or depressed transmission depending on the functional state of the interneuron.
منابع مشابه
Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine t...
متن کاملHippocampal Interneurons Express a Novel Form of Synaptic Plasticity
Individual GABAergic interneurons in hippocampus can powerfully inhibit more than a thousand excitatory pyramidal neurons. Therefore, control of interneuron excitability provides control over hippocampal networks. We have identified a novel mechanism in hippocampus that weakens excitatory synapses onto GABAergic interneurons. Following stimulation that elicits long-term potentiation at neighbor...
متن کاملCell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.
Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic inter...
متن کاملInduction and expression rules of synaptic plasticity in hippocampal interneurons.
The knowledge that excitatory synapses on aspiny hippocampal interneurons can develop genuine forms of activity-dependent remodeling, independently from the surrounding network of principal cells, is a relatively new concept. Cumulative evidence has now unequivocally demonstrated that, despite the absence of specialized postsynaptic spines that serve as compartmentalized structure for intracell...
متن کاملTRPV1 Channels Mediate Long-Term Depression at Synapses on Hippocampal Interneurons
TRPV1 receptors have classically been defined as heat-sensitive, ligand-gated, nonselective cation channels that integrate nociceptive stimuli in sensory neurons. TRPV1 receptors have also been identified in the brain, but their physiological role is poorly understood. Here we report that TRPV1 channel activation is necessary and sufficient to trigger long-term synaptic depression (LTD). Excita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2004